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ECS315 2015/1 Part I.3 Dr.Prapun
4.38. Further reading on combinatorial ideas: the pigeon-hole

principle, inclusion-exclusion principle, generating functions and
recurrence relations, and flows in networks.

4.4 Famous Example: Galileo and the Duke of Tuscany

Example 4.39. When you toss three dice, the chance of the sum
being 10 is greater than the chance of the sum being 9.

• The Grand Duke of Tuscany “ordered” Galileo to explain a
paradox arising in the experiment of tossing three dice [2]:

“Why, although there were an equal number of 6 par-
titions of the numbers 9 and 10, did experience state
that the chance of throwing a total 9 with three fair
dice was less than that of throwing a total of 10?”

• Partitions of sums 11, 12, 9 and 10 of the game of three fair
dice:

1+4+6=11 1+5+6=12 3+3+3=9 1+3+6=10
2+3+6=11 2+4+6=12 1+2+6=9 1+4+5=10
2+4+5=11 3+4+5=12 1+3+5=9 2+2+6=10
1+5+5=11 2+5+5=12 1+4+4=9 2+3+5=10
3+3+5=11 3+3+6=12 2+2+5=9 2+4+4=10
3+4+4=11 4+4+4=12 2+3+4=9 3+3+3=10

The partitions above are not equivalent. For example, from
the addenda 1, 2, 6, the sum 9 can come up in 3! = 6 different
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ways; from the addenda 2, 2, 5, the sum 9 can come up in
3!

2!1! = 3 different ways; the sum 9 can come up in only one
way from 3, 3, 3.

• Remarks : Let Xi be the outcome of the ith dice and Sn be
the sum X1 +X2 + · · ·+Xn.

(a) P [S3 = 9] = P [S3 = 12] = 25
63 < 27

63 = P [S3 = 10] =
P [S3 = 11]. Note that the difference between the two
probabilities is only 1

108 .

(b) The range of Sn is from n to 6n. So, there are 6n−n+1 =
5n+ 1 possible values.

(c) The pmf of Sn is symmetric around its expected value at
n+6n

2 = 7n
2 .

◦ P [Sn = m] = P [Sn = 7n−m].
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Figure 2: pmf of Sn for n = 3 and n = 4.

4.5 Application: Success Runs

Example 4.40. We are all familiar with “success runs” in many
different contexts. For example, we may be or follow a tennis
player and count the number of consecutive times the player’s first
serve is good. Or we may consider a run of forehand winners. A
basketball player may be on a “hot streak” and hit his or her
shots perfectly for a number of plays in row.

39



In all the examples, whether you should or should not be amazed
by the observation depends on a lot of other information. There
may be perfectly reasonable explanations for any particular success
run. But we should be curious as to whether randomness could
also be a perfectly reasonable explanation. Could the hot streak
of a player simply be a snapshot of a random process, one that we
particularly like and therefore pay attention to?

In 1985, cognitive psychologists Amos Taversky and Thomas
Gilovich examined12 the shooting performance of the Philadelphia
76ers, Boston Celtics and Cornell University’s men’s basketball
team. They sought to discover whether a player’s previous shot
had any predictive effect on his or her next shot. Despite basketball
fans’ and players’ widespread belief in hot streaks, the researchers
found no support for the concept. (No evidence of nonrandom
behavior.) [14, p 178]

4.41. Academics call the mistaken impression that a random
streak is due to extraordinary performance the hot-hand fallacy.
Much of the work on the hot-hand fallacy has been done in the
context of sports because in sports, performance is easy to define
and measure. Also, the rules of the game are clear and definite,
data are plentiful and public, and situations of interest are repli-
cated repeatedly. Not to mention that the subject gives academics
a way to attend games and pretend they are working. [14, p 178]

Example 4.42. Suppose that two people are separately asked to
toss a fair coin 120 times and take note of the results. Heads is
noted as a “one” and tails as a “zero”. The following two lists of
compiled zeros and ones result

1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0
0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1

and
12“The Hot Hand in Basketball: On the Misperception of Random Sequences”
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1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0
1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0
0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0
0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1

One of the two individuals has cheated and has fabricated a list of
numbers without having tossed the coin. Which list is more likely
be the fabricated list? [21, Ex. 7.1 p 42–43]

The answer is later provided in Example 4.48.

Definition 4.43. A run is a sequence of more than one consecu-
tive identical outcomes, also known as a clump.

Definition 4.44. Let Rn represent the length of the longest run
of heads in n independent tosses of a fair coin. Let An(x) be the
set of (head/tail) sequences of length n in which the longest run
of heads does not exceed x. Let an(x) = ‖An(x)‖.
Example 4.45. If a fair coin is flipped, say, three times, we can
easily list all possible sequences:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

and accordingly derive:

x P [R3 = x] a3(x)

0 1/8 1
1 4/8 4
2 2/8 7
3 1/8 8

4.46. Consider an(x). Note that if n ≤ x, then an(x) = 2n because
any outcome is a favorable one. (It is impossible to get more than
three heads in three coin tosses). For n > x, we can partition
An(x) by the position k of the first tail. Observe that k must be
≤ x + 1 otherwise we will have more than x consecutive heads in
the sequence which contradicts the definition of An(x). For each
k ∈ {1, 2, . . . , x+ 1}, the favorable sequences are in the form

HH . . . H︸ ︷︷ ︸
k−1 heads

T XX . . .X︸ ︷︷ ︸
n−k positions
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where, to keep the sequences in An(x), the last n − k positions13

must be in An−k(x). Thus,

an(x) =
x+1∑
k=1

an−k(x) for n > x.

In conclusion, we have

an(x) =

{ ∑x
j=0 an−j−1(x), n > x,

2n n ≤ x

[20]. The following MATLAB function calculates an(x)

function a = a nx(n,x)
a = [2.ˆ(1:x) zeros(1,n−x)];
a(x+1) = 1+sum(a(1:x));
for k = (x+2):n

a(k) = sum(a((k−1−x):(k−1)));
end
a = a(n);

4.47. Similar technique can be used to construct Bn(x) defined
as the set of sequences of length n in which the longest run of
heads and the longest run of tails do not exceed x. To check
whether a sequence is in Bn(x), first we convert it into sequence
of S and D by checking each adjacent pair of coin tosses in the
original sequence. S means the pair have same outcome and D
means they are different. This process gives a sequence of length
n− 1. Observe that a string of x− 1 consecutive S’s is equivalent
to a run of length x. This put us back to the earlier problem of
finding an(x) where the roles of H and T are now played by S and
D, respectively. (The length of the sequence changes from n to
n − 1 and the max run length is x − 1 for S instead of x for H.)
Hence, bn(x) = ‖Bn(x)‖ can be found by

bn(x) = 2an−1(x− 1)

[20].

13Strictly speaking, we need to consider the case when n = x+ 1 separately. In such case,
when k = x+ 1, we have A0(x). This is because the sequence starts with x heads, then a tail,
and no more space left. In which case, this part of the partition has only one element; so we
should define a0(x) = 1. Fortunately, for x ≥ 1, this is automatically satisfied in an(x) = 2n.
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Example 4.48. Continue from Example 4.42. We can check that
in 120 tosses of a fair coin, there is a very large probability that at
some point during the tossing process, a sequence of five or more
heads or five or more tails will naturally occur. The probability of
this is

2120 − b120(4)

2120
≈ 0.9865.

0.9865. In contrast to the second list, the first list shows no such
sequence of five heads in a row or five tails in a row. In the first
list, the longest sequence of either heads or tails consists of three
in a row. In 120 tosses of a fair coin, the probability of the longest
sequence consisting of three or less in a row is equal to

b120(3)

2120
≈ 0.000053,

which is extremely small indeed. Thus, the first list is almost
certainly a fake. Most people tend to avoid noting long sequences
of consecutive heads or tails. Truly random sequences do not share
this human tendency! [21, Ex. 7.1 p 42–43]
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